MATH 504 HOMEWORK 6

Due Wednesday, April 20.

Problem 1. Suppose that for all $n, 2_n^{\aleph} = \aleph_{\omega+1}$. Show that $2^{\aleph_{\omega}} = \aleph_{\omega+1}$.

Hint: For every $A \subset \aleph_{\omega}$, define the $A_n = A \cap \aleph_n$. Consider the map $h(A) = \langle A_n \mid n < \omega \rangle$.

Problem 2. Suppose that κ is inaccessible in V and \mathbb{P} is a poset of cardinality less than κ . Let G be \mathbb{P} -generic. Show that in V[G], κ remains inaccessible.

Problem 3. Let κ be a regular uncountable cardinal and \mathbb{P} be a κ -closed poset. Show that \mathbb{P} preserves stationary subsets of κ , i.e. if $S \subset \kappa$ is stationary in the ground model, then S remains stationary in any \mathbb{P} -generic extension.

Hint: Given S, a name \dot{C} , and p, such that $p \Vdash \dot{C}$ is a club subset of κ ", show there is a sequence in the ground model $\langle p_{\alpha}, \gamma_{\alpha} \mid \alpha < \kappa \rangle$, such that:

- $\langle p_{\alpha} \mid \alpha < \kappa \rangle$ is a decreasing sequence below p,
- $\langle \gamma_{\alpha} \mid \alpha < \kappa \rangle$ is a club in κ ,
- each $p_{\alpha} \Vdash \gamma_{\alpha} \in C$.

Then use stationarity of S in the ground model.

Problem 4. Let $S \subset \omega_1$ be a stationary set. Define $\mathbb{P} := \{p \subset S \mid p \text{ is closed and bounded}\}$, and set $p \leq q$ if p end extends q i.e. for some $\alpha, p \cap \alpha = q$.

- (1) Show that \mathbb{P} is ω -distributive, i.e. if $p \Vdash \dot{f} : \omega \to ON$, then there is some $q \leq p$ and a function g in the ground model, such that $q \Vdash \dot{f} = \check{g}$. Note that this implies that \mathbb{P} adds no countable subsets of ω_1 , and hence it preserves ω_1 .
- (2) What is the best chain condition for P? Justify your answer. Use that and the above to show that P preserves all cardinals.
- (3) Suppose that $T := S \setminus \omega_1$ is also stationary. Let G be a \mathbb{P} -generic filter. Show that in V[G], T is nonstationary.

Remark 1. The above is an example of a forcing that destroys a stationary set, without collapsing cardinals. On the other hand you cannot use forcing to destroy a club set. More precisely, if $V \subset W$ are two models of set theory and $V \models "D$ is club in κ ", then $W \models "D$ is club in κ ". Note that in the above problem it was important that S was stationary; i.e. you cannot add a new club through a nonstationary set.